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A DESCRIPTION OF NUMERICAL METHODS AND COMPUTER PROGRAMS
FOR TWO-DIMENSIONAL AND AXISYMMETRIC SUPERSONIC FLOW
OVER BLUNT-NOSED AND FLARED BODIES

By Mamoru Inouye, John V. Rakich, and Harvard Lomax
Ames Research Center

SUMMARY

The computer programs developed at Ames Research Center for calculating
the inviscid flow field around blunt-nosed bodies are described briefly and
their application to specific shapes is demonstrated. The programs solve
numerically the exact equations of motion for plane or axisymmetric bodies at
zero angle of attack and for a perfect gas or a real gas in thermodynamic
equilibrium. An inverse method is used for the subsonic-transonic region, and
the method of characteristics is used for the supersonic region. Results are
shown for several body shapes in both perfect and real gas flow, including a
comparison between air and a COz-No mixture. Presented are shock-wave shapes
and distributions of pressure and other flow variables along the body and
across the shock layer.

INTRODUCTION

Aircraft and spacecraft designers are faced with the problem of determin-
ing the inviscid flow field over blunt-nosed bodies for supersonic flight at
speeds encompassing those attained in planetary entry. In addition to the
blunt nose, a typical body shape may have a flared afterbody which further
complicates the problem. The dominant features of such a flow field are indi-
cated in sketch (a). There occurs a detached bow wave that is normal at the
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axis of symmetry and decays in strength as it approaches a Mach wave at large
distances from the body. The flow behind the shock wave is subsonic in the
nose region bounded by the sonic line and becomes supersonic over the after-
body. Expansion waves and embedded shocks may occur as a result of corners.
In addition, an embedded shock may arise from coalescence of compression waves
from the surface or from separation of the boundary layer, which often occurs
on this type of body. Analysis of the viscous region is beyond the scope of
the present study; however, its study depends on a knowledge of the external
inviscid flow.

A number of exact and approximate techniques for determining the flow
field depicted in sketch (a) have been reported. Some of the more recent con-
tributions are references 1 through 4 for blunt-body flows, and references 5
and 6 for the supersonic region downstream of the nose. For flared bodies,
exact numerical results have been reported in reference 7 while approximate
methods may be found in references 8 through 10. Hayes and Probstein (ref. 11)
present a more complete discussion of the entire flow field.

The computer programs that are described in the present report solve
numerically the exact equations of motion for plane and axisymmetric flow at
zero angle of attack and provide the complete inviscid flow field between the
body and the shock wave. The fluid may be a perfect gas or a real gas in
thermodynamic equilibrium. An inverse method (ref. 3) is used for the
subsonic—transonic region (referred to as the blunt-body program), and the
method of characteristics (ref. 5) is used to extend the calculations down-
stream in the supersonic region. These computer programs were written in
FORTRAN II for use on an IBM 7094 at Ames Research Center, but have been made
avallable to a number of other organizations. The distribution of these pro-
grams has created a need for a more complete description and documentation
than is presently available. The present report is intended to partially
fulfill this need.

The purpose of the present report is to provide a general description of
the Ames flow-field computer programs and to present results of calculations
that demonstrate the range of applicability. The governing equations of
motion are introduced briefly at the start. Then the methods used to solve
the equations are presented. No attempt is made to provide a complete listing
of all the subroutines and flow charts. Instead, detailed descriptions are
provided only for selected portions of the programs that warrant special con-
sideration. The information contained in this report should acquaint the
reader with the general logic followed in the programs and be helpful in diag-
nosing small difficulties or in making minor modifications.

Sample results are presented for shock-wave shape, surface-pressure
distribution, and shock-layer profiles of total pressure, static pressure,
density, and velocity for various free-stream conditions and body shapes.

The first examples demonstrate how a simple modification improves the accuracy
of the calculations in regions with large entropy (or vorticity) gradients.
Then comparisons are made with flow-field results obtained by means of an
integral method for the blunt-body solution. Comparisons are also made with
experimental results obtained for a body with a flare. Finally, examples of
calculations for real gases in thermodynamic equilibrium are presented.
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SYMBOLS

speed of sound

ellipsoid bluntness, (b/c)Z
semiaxes of ellipsoid
enthalpy

total enthalpy

Mach nunber

coordinate normal to a streamline
static pressure

total pressure

nose or cylinder radius
entropy

sheared coordinates (see egs. (8))

velocity components in x,y directions

velocity

shock-wave shape

cylindrical coordinates with origin at body nose

ratio of specific heats
shock standoff distance

angle of corner on the body

index for number of degrees of symmetry;
flow, and € = 1 for axisymmetric flow

flow angle
cone angle

Mach angle

€ = 0 for plane symmetric



o} density

¥ stream function
Subscripts
b body
s shock
0 free-stream conditions
EQUATTIONS

The partial differential equations that must be satisfied for steady,
inviscid flow are as follows:

Continuity of mass

2

- (puy ") + 5%_ (ovy®) =0 (1)

where ¢ = O for plane symmetric flow and € = 1 for axisymmetric flow.
Momentum equations

X direction

au éu dp
=+ v =4+ E =0 2
pu bx e 5y ox (2)
y direction
ov ov op
— + PV — + == =0
pu % v ST 4 B (3)
Energy equation
u op + v op _ a2<% 92 + v é%) =0 (&)
ox dy ox oy

where & 1s the isentropic speed of sound defined by

2 _ (%
) ap)s (5)



To solve these equations for a given set of boundary conditions, the
thermodynamic properties of the gas are required; for example,

a® = £(p,p) (6)

For a perfect gas these relationships are merely functions of the gas constant
and ratio of specific heats. For example, equation (6) becomes

a? = 28 (7)

For a real gas the equilibrium composition and thermodynamic properties must
be obtained by means of statistical mechanics. These calculations can be done
independently of the flow-field equations, and the results can be tabulated
for later use. Dr. Harry E. Bailey of Ames Research Center has recently per-
formed these calculations for various gas mixtures of current interest follow-
ing the assumptions and approximations made by Marrone (ref. 12). The data
cover temperatures to 25,000° K in 250° increments and densities from 10~7 to
102 times a reference density, Po» Which is the density of the mixture for a
temperature of 273.160 K and a pressure of 0.101325 MN/m? (1 atmosphere) .

For example, the properties for carbon dioxide are reported in reference 13.

The thermodynamic properties in this form are not suitable for optimal
use in a computer program. ©Some approximations are necessary to minimize the
computing time and storage requirements. For use in the present programs, the
calculated values of the properties have been spline fitted with cubics by the
method of reference 1L, and the coefficients of the cubics have been stored on
magnetic tape. A special subroutine reads the tape, searches for the proper
coefficients, and evaluates the desired properties. This approximate tech-
nique, in general, yields results within 1 percent of the original data. At
present the thermodynamic properties for air and the twelve mixtures of nitro-
gen, carbon dioxide, and argon listed in table I are available on tape.

For moderate temperatures, for example, below about 2000° K for air,
dissociation and ionization can be neglected, and the imperfect gas effects
are due to the excitation of the vibrational states. The thermodynamic prop-
erties for such thermally perfect gases have been calculated in reference 15
and have also been stored on tape for use in the present programs.

The system of equations is now complete. In general, the four partial
differential equations (egs. (1) through (4)) must be solved simultaneously
for the four dependent variables p,p,u, and v. In the following sections
the methods used to solve these equations numerically in the subsonic-
transonic region and in the supersonic region are discussed.

METHOD OF SOLUTION FOR SUBSONIC-TRANSONIC REGION

In the nose region of blunt bodies, equations (1) through (4) exhibit
different character; namely, the equations are elliptic in the subsonic region,



parabolic on the sonic line, and hyperbolic in the supersonic region. Despite
these complications, an inverse method (see, e.g., ref. 1) has been found
effectual for solving such flow fields. 1In the application of this method, a
shock shape is assumed and the equations are integrated numerically by a
finite-difference method to determine the corresponding body shape. The par-
ticular version used in this report is reported in detail in reference 3;
hence, only a brief description will follow.

Since the initial boundary conditions are specified along the shock, a
sheared, nonorthogonal coordinate system with one axis coincident with the
shock is useful (see sketch (b)). The new coordinates are defined as follows:

It

y \ s = x - X(y)
i=l i i+l (8)
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¥=0 Equations (1) through (4) are then

Z

(9)

% dp du dv
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For a given set of free-stream conditions and shock shape, the values of
p,p,u, and v/t Just behind the shock wave are calculated from the Rankine-
Hugoniot relations, and the derivatives with respect to t are found by
numerical differentiation. Then equations (9) are used to march in step-by-
step toward the body. A flow chart for the computer program is shown in
figure 1, and a list of subroutines is provided in table II. To illustrate
the predictor-corrector integration technique, suppose the flow properties
are known for the (i - 1)th and ith steps and are to be calculated for the
(i +1)th step (see sketch (b)). A second-order predictor and a modified
Eulerian second-order corrector are used as follows, where p is a typical
flow variable.

I

1. Differentiate numerically data for ith step to obtain (Bp/at)i

2. Calculate from equations (9), (Bp/as)i



. Predict new value Djyy = Dy +2 As(ap/és)i

= w

Differentiate numerically to obtain (ap/at)i+l
5. Calculate from equations (9), (85/8s)i+1
6. Correct value Dy, = p; + 0.5 As[(bp/és)i + (Sﬁ/as)i+l]

The stream function is calculated for each point, and the body is deter-
mined as the locus of points where the stream function vanishes. The step
size is chosen so that the stagnation point is reached in approximately seven
steps. It is usually necessary to iterate on the shock shape to obtain the
desired body shape. However, this procedure is simplified by a one-parameter
family of shock shapes that will produce reasonably accurate spheres and
ellipsoids. Values of the shock-shape parameter for spheres are presented in
reference 3 for perfect gases and for air in thermodynamic equilibrium. Solu-
tions for other gases and nonspherical bodies including not-too-blunt ellip-
soids can be obtained by appropriate changes of the shock-shape parameter.
There are limitations on the application of the program, mainly because of
inherent numerical difficulties, as discussed in reference 3. As a general
rule, solutions are not possible for Mach numbers less than 3 and for body
shapes that are either very blunt (B, > 4) or not smooth in the nose region.

The output from the blunt-body program consists of the flow properties on
the body and in the flow field at the coordinate intersections shown in
sketch (b). In addition, the properties are interpolated along a line Jjoining
the shock and body in the supersonic region. These. data can be used as input
for the method of characteristics program to continue the calculations down-
stream over the afterbody.

METHOD OF SOLUTION FOR SUPERSONIC REGION

A computer program based on the method of characteristics is used to
determine the flow field in the supersonic region. This program is comprised
of a main program and 33 subroutines which are listed in table III. Most of
these subroutines are short and straightforward and, therefore, they will not
be explained in detail. (Table III describes the primary function of each.)
However, the main program requires a few words of explanation. In addition,
certain quadratic interpolation procedures as well as methods for calculating
embedded shock waves will be discussed.

Calculation Procedure for Smooth Bodies

Along the characteristic or Mach lines, the partial differential equa-
tions ((1) through (3)) reduce to the following ordinary equations (see, e.g.,
ref. 11):

cot B gy i+ g = € sin 8 dy (10)

NE M sin(6 = p) ¥
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Equation (10) is solved in conjunction with the energy equation in integrated
fornm

h +

n4<%

= hy = constant (11)

the conservation of entropy on streamlines
S = S(n) (12)
and the equation of state
h = h(p,S) (13)

Briefly, the method consists of starting with flow properties along a non-
characteristic line between the body and the shock wave, as determined from
the solution for the subsonic-transonic region, and then integrating the
equations downstream along the Mach lines. The stepwise procedure is illus-
trated by the typical characteristic mesh shown in sketch (c). Beginning with
known data on the starting line

:?;ﬂg???f:f”d the calculation proceeds to the
where body along a right-running
J‘ﬂﬁ“mk5ﬂ°w characteristic, and then back
;‘f}ge;?é:;’;h\;‘lo;'ﬁ;n to the next starting point (or
of the field points shock point). A simple flow
(numbered as shown) chart is shown in figure 2

K=7 Direction of calculation which illustrates this part of

the program logic. In sketch

Starting
line sketch (c), the previously cal-
culated (or input) data points
y Xmax are identified by small circles,
| and the point currently being
< calculated is identified by the

shaded symbol. Only the num-
bered points are available in
Sketch (c) computer memory at this time,

the remaining circled points

having been written out pre-
viously. The stored data points are contained in a two-dimensional array,
P(J,K), in which the index J identifies the various flow variables and the
index K identifies the location of the point. In terms of program termin-
ology, the number of field points involved in the calculation loop is given
by M2 + 1, where M2 is an integer defined in the main program. The field
point currently being calculated is identified as P(J,K9), where K9 1is also
an integer defined in the main program. Thus as the calculation proceeds
along a right-running characteristic, the integer K9 takes on successive
values between K9 = M2 + 1 on the shock (or input line) to K9 = 1 on the
body.

Typical characteristic mesh

For the calculation of a typical mesh point (C in sketch (c)), three
adjacent points are usually used. These points are labeled A,D,B in
sketch (c), and correspond, in the example shown, to the points X = 2,3,4% in
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the P array. The calculation of data at the new point is effected with the
use of equations (10) through (13) and a standard predictor-corrector proce-
dure which averages the coefficients of the differentials. The procedure is
started with a crude predictor (i.e., that conditions at C equal those at
B) and is followed, therefore, by at least two correctors. This is in con-
trast to the method used for the blunt-body solution which makes use of only
one corrector, but which uses a second-order predictor.

In calculating rotational supersonic flow by the method of characteris-
tics, it is convenient to introduce entropy as a flow property since it
remains constant on streamlines. In the past it has sometimes been assumed
that the entropy varies linearly between streamlines (see ref. 16, p. 636).
To illustrate this procedure, consider three points in the flow field (see
sketch (c)) A and B, where the flow properties are known, and C, where the
flow properties are to be determined. The entropy at C can be calculated
using the flow properties at A and B and with the assumption that the
entropy varies linearly along the normal to the streamlines between A and B.
This assumption is valid provided that the change in entropy gradient between
A and B is small. However, serious errcrs may occur in the flow-field cal-
culations if this condition is not realized (see, e.g., ref. 17). Decreasing
the mesh size by increasing the number of mesh points is not a satisfactory
remedy because the computing time increases as the square of the number of
input points, and the storage capacity of computing machines is alsc limited.
In reference 17, an iterative scheme was used wherein a check on the inte-
grated mass flow was made point by point throughout the field. The method
adopted in the present program is simpler in that no additional iterations are
needed.. Quadratic rather than linear interpolation for the entropy is used,
and errors are therefore reduced to the order of the cube of the mesh size.
This is accomplished by using the flow properties at point D, which lies on
Mach lines upstream from A and B. This additional point allows the use of a
gquadratic calculation for entropy between A and B. OSome improvement in the
flow-field sclution can be expected, especially in regions where large changes
in entropy gradient occur.

A feature of the present computer program, which proved useful for exam—
ining entropy gradients, is the ability to interpolate for field data on
radial (body~ or axis-normal) lines. This operation is noted in the flow
chart (fig. 2). These interpolated data at several x stations are printed
out at the end of the normal output and, if desired, the data from the last
X station can be stored on magnetic tape. This tape can later be used to
provide starting conditions to extend the calculation downstream.

Calculation Procedure for Bodies With Corners

The method of characteristics described in the previous section is not
applicable in regions where the body slope is discontinuous, or where embedded
shocks occur. For these cases, characteristics theory may be applied on both
sides of the discontinuity with matching conditions obtained for the Rankine-
Hugoniot shock relations, or Prandtl-Meyer equations in the case of an expan-
sion corner. Methods for calculating flows of this type may be found, for



example, in reference 16. This section describes some of the details of this
calculation as incorporated into the present program.

While any number of discontinuities are allowable in theory, practical
considerations have resulted in a limitation, for the present program, of any
two of the discontinuities indicated in sketch (a). These are: (a) an expan-
sion corner, (b) a compression corner, and (c) an embedded shock arising, for
example, from a coalescence of Mach waves from a concave wall. Procedures
used in calculating these three types of discontinuities are discussed next.
Descriptions of the compression corner and coalesced shock explain only the
starting conditions used for the shock calculation, and are followed by an
explanation of a general embedded shock point. The calculation for an embed-
ded shock proceeds to its intersection with the bow shock. Then, since inter-
actions between shocks are not considered, the calculation terminates along a
right-running characteristic through this point.

Expansion corner.- The expansion corner is illustrated in sketch (d).

Upon reaching the body in region II for the first time, point C is calculated
A on the extension of the body shape
| e/ ./ specified for region I. This pro-

Y, vides an analytic continuation of
///A the flow ahead of the corner and,
with stored data at points A and
B, enables one to use a quadratic
interpolation for conditions at
point D Just ahead of the corner.

P s Now, given conditions at D and
the expansion angle 8, the
777777777777 77777777777 Prandtl-Meyer equations can be

used to calculate conditions on
the body Jjust behind the corner.
In addition, conditions for sev-
eral intermediate angles are com-—
puted and all are stored with

Sketch (4) coordinate values corresponding to

point D. The problem is now

reduced to one which can be handled by the main characteristics program. With
known conditions at points D and E, point F can be computed, followed by
similar calculations for points G,H, etec., until the entire expansion fan is
determined as shown in the inset. A greater number of mesh points are intro-
duced at such & corner for large expansion angles, so as to provide a reason-
ably uniform mesh.

Region I Region IT

Expansion corner

Compression corner.- The compression corner is shown in sketch (e). The
procedure for calculating conditions at point D 1is identical with that
described for the expansion corner. In this case, the oblique shock relations
are used to calculate the flow variables on the body just behind the corner in
terms of upstream conditions at point D and the known deflection angle, o.
The necessary shock solution is not explicit, however, and an iterative pro-
cedure has been programmed to give the jump conditions. The segment of the
shock D-F 1is assumed straight and at an angle corresponding to the obligue
shock at point D. Data at point F are then found by a quadratic

10



Compression corner

Sketch (e)

interpolation along the right-running characteristic through E, and the jump
conditions at point F are computed from the shock relations. The data at
D' and F' can now be used to determine the body point C'. Knowledge of the
shock wave at point F must be stored in the main computer program so that
the general shock-point subroutine can be called when the calculation along
the next right-running characteristic reaches this point.

Coalesced shock.- In sketch (f) the formation of a coalesced shock in the
flow field is depicted at point E where two Mach lines of the same family
have intersected. A shock wave is
started at point E and at an angle
Shock equal to the average slope of the Mach
lines F-E and G-E. The jump condi-
tions at A-A' are then computed and
stored in the P array. Now the points
nunbered (K9 - 3),(K9 - 4), and so on,
are computed with the use of known data
—(K9-a) on.the character%stic through point G.

This procedure gives the starting con-
ditions for the coalesced shock, and
the problem is now reduced to the gen-
eral case which i1s explained next.

(K9 +2)

General shock point.- This sub-
routine solves, in an iterative proce-
Sketch (f) dure, for the shock angle at point B
in sketch (f), which satisfies the flow
conditions behind the shock. The procedure is as follows. When the shock is
reached, point C is first calculated in the usual way with data at (x9 - 1),
K9, and (K9 + 1). After an initial guess, the average shock angle at A and B
is used to locate point B, and data there are obtained by quadratic inter-
polation through points C, (K9 + 1), and (K9 + 2). Data at B' are obtained
from the shock relations, and the intersection D of Mach lines through A'

General shock point
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and B' 1is determined. Data at point D are obtained by interpolating through
points A',(K9 - 3), and (K9 - 4). Equation (10) is then used to determine
conditions at B' din terms of data at D, that is, on the line D-B!

cot u dp + a0 = - —E sin 6 dy
ov2 M sin(6 + p) ¥

The value of pressure at B! obtained from this equation is then compared

with that obtained from the shock conditions and the iteration is continued
until the two values agree. The calculation on the downstream side of the

shock can then proceed in the usuval way.

RESULTS AND DISCUSSION

Effect of Entropy Calculation on Solutions for a Perfect Gas

The flow field around a blunted cone is quite sensitive to the entropy
calculation because of the growth of the body shape. Since the total amount
of high entropy fluid remains constant, the thickness of the entropy layer
must diminish as the body radius grows. Consequently, the entropy gradients
normal to streamlines must increase.

The flow field over a spherically blunted cone was calculated by the
present method for ¥ = 1.4 and M, = 10. Both the shock-wave shape and
surface-pressure distribution were unaffected by the entropy calculation.
However, the total pressure profiles in the shock layer are significantly
different as shown in figure 3(a). (The ordinate is the distance from the
surface normalized by the total distance to the shock.) The differences are
associated with the overexpansion of the shock wave which occurs near
x/R = 10. The entropy rise across the shock wave is a minimum there, and,
hence, the total pressure in the shock layer has the maximum value of
.2.1><1O4><1poo on the streamline passing through this point. At every downstream
station, the total pressure on this streamline must have the same value. The
linear entropy interpolation smooths the total pressure distribution and
erroneously reduces this maximum value. Past x/R = 40, the entropy layer
becomes so thin that even quadratic interpolation is not accurate near the
body. This deficiency is usually unimportant from a practical standpoint
because the inviscid entropy layer would have been absorbed within the
boundary layer. ~

The static pressure profiles are not affected by the entropy calculation
as shown in figure 3(b). However, the entropy calculation has a significant
effect on the density and velocity profiles shown in figures 3(c) and 3(d).
The result is that the mass-flow balance between the shock layer and the free
stream deteriorates with distance as shown in figure 4. At x/R = 25, the
error in the mass-flow balance is 9 percent with linear interpolation and
negligible with quadratic interpolation.

12



Similar comparisons have been made for a hemisphere cylinder for which
the entropy gradients are not as large. Linear interpolation for the entropy
yielded satisfactory results for the shock-wave shape, surface-pressure dis-
tribution, shock-layer profiles, and mass-flow balance. These results cor-
roborate the findings of reference 5 where linear interpolation for the
entropy was used, and checks of the mass-flow balance showed satisfactory
agreement. These examples show that for most bodies linear interpolation for
the entropy is adequate for obtaining shock-wave shape and static-pressure
distribution, but it may cause serious errors in the other flow-field proper-
ties in regions with large entropy gradients. Since quadratic interpolation
does not require an appreciable increase in the computing time, it is used
exclusively in the present method.

Comparison of Results From Present Method
With Chushkin and Shulishnina

It is of interest to compare results from the present method with other
calculations. Flow-field calculations by the method of characteristics for
blunted cones by Chushkin and Shulishnina (ref. 6) were recently brought to
our attention. These calculations differ from the present method in that the
subsonic-transonic solution was that obtained by Belotserkovskii (ref. 4)
using the method of integral relations. 1In addition, some differences are to
be expected in the computational procedure for the method of characteristics.
Sclutions were obtained for spherically blunted cones with half angles ranging
from 0° to 40° and for 7 = 1.t and M, = 4, 6, and 10. The surface-pressure
distributions in the nose region from reference 6 and the present method are
in good agreement as shown in figure 5. Although not shown in the figure,
this good agreement extends downstream until the sharp-cone values are reached.

Comparisons of pressure distributions over cylinders with ellipsoidal
noses are shown in figure 6 for 7 = 1.4 and M = 6. For the slender or pro-
late ellipsoid, the calculations proceeded smoothly, and the results from the
present method show good agreement with the results of reference 6. For the
blunt or oblate ellipsoid, the blunt-body solution used in the present method
is in error in the transonic region. However, the method of characteristics
solution quickly corrects this error, at least, as far as the surface pressure
is concerned.

Comparison With Experiment for a Body With Corners

As an illustration of the embedded shock and expansion fan calculations,
the flow over a blunt cone-cylinder-flare body was calculated for perfect air
at a Mach nunber of 4.10. The results of the shock shapes obtained from this
calculation are shown in figure T, and the surface pressures are shown in
figure 8. Also shown in these figures are experimental results from refer-
ence 18. Of particular interest in figure 7 is the good agreement between
experiment and theory for the enbedded shock on the flare. Good agreement is
also found for the experimental and calculated pressure distributions in
figure 8. Note that the calculation predicts an increasing pressure with dis-
tance along the flare. This pressure variation is caused by the increase of

13



upstream dynamic pressure with distance from the corner, that is, the effect
of the nonuniform upstream conditions created by the strong bow shock (cf.
ref. 9).

Example of Solution for Gas Mixtures
in Thermodynamic Equilibrium

Flow-field solutions for gases in thermodynamic equilibrium present no
inherent difficulty aside from an increase in computing time required to cal-
culate the thermodynamic properties. However, the limited accuracy of the
real gas properties obtained from the curve fits coupled with the different
calculation methods used in the blunt body and method of characteristics pro-
grams may result in an incompatibility along the input line. For example, in
the blunt-body program the enthalpy is determined with pressure and density as
inputs, whereas in the method of characteristics program the enthalpy is
determined with pressure and entropy as inputs. In regions where the curve
fits are poor, particularly near the limits of the tables, the two values for
enthalpy may be substantially different and may cause difficulties.

As examples of flow-field calculations for real gases, the pressure dis-
tribution on the blunt cone-cylinder-flare body studied in the preceding
example is shown in figure 9 for air and for a mixture of nitrogen and carbon
dioxide. No unusual effects are noted compared with the earlier perfect gas
results.

CONCLUDING REMARKS

The Ames computer programs for calculating the complete subsonic-
supersonic flow field around blunt-nosed bodies at zero angle of attack were
described. The more complex portions of the programs were explained in detail,
and flow charts for the main programs were presented. The flow charts should
be helpful in diagnosing difficulties or making minor modifications for
specific applications.

A number of example calculations were presented to illustrate the appli-
cability and accuracy of the programs. It was shown that the use of a quad-
ratic rather than the usual linear interpolation for entropy improved the
accuracy of the method of characteristics program. The improvement showed up
especially in the total pressure near the surface of blunt cones, where large
entropy gradients develop, and in the integrated mass flow across the shock
layer for such bodies. Surface-pressure distributions on blunted cones are
in agreement with published numerical results obtained by scmewhat different
methods. Surface pressures and shock shapes, including the embedded shock,
for a blunted cone-cylinder-flare, show good agreement with experiment.
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Finally, to illustrate applicability to flows of real gases in thermodynamic
equilibrium, surface pressures on a flared body were presented for flight in
air and in a COzx-Nz mixture.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 8, 1965
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TABLE I.- GAS MIXTURES ON AMES REAL-GAS TAPE

Composition by File

- volume in percent number
Air: 78 .2 Nz, 21 -8 02 2

Nitrogen Carbon dioxide Argon

100 1
95.1 h.o 11
90 10 4
89.2 10.8 12
80 20 1
70 30 8
60 Lo 9
51.2 48.8 13
50 50 10
Lo 10 50 6
100 3
100 5




=W

4 O\

10

11
12

13

14
15

16
7

18
19

20

21
22

" TABLE II.-~ LIST OF SUBROUTINES

BLUNT-BODY PROGRAM

Subroutine name
and ID no.
(if any)

EXEC1(THOTOL)
EXEC2 (THOT702)

OUT(THOTOL)
SHOCK ( THOT05)

DERIVS(THOTO6)
FIELDS(THOTOT)
STEP ( THO708)

BODYS(THOT709)
POLYN(THOT710)
FIELDP({THOT11)

BODYSL(THOT12)
FHIPSI(THO7L13)

TERP3 (THO71k4)

SONIC(THOT15)
OUTT (THOT716)

DERIVT(THOTL1T7)
FIELDX(THO718)

POLY3(THOT720)
LES2N(THOT23)

SMOOTH ( THO 724 )

DERIV1(THOT725)
DIFFOR(THO733)

Primary
calling Subroutine function
routine
MATN Reads input cards
MAIN Reads shock-shape parameters and calcu-
. lates shock shape and slope
MATN Outputs free-stream conditions and field
DERIVT | data after each step
MAIN Calculates flow properties behind shock
wave
gﬁég Calculates derivatives in s direction
BODYS Calculates coefficients for line on
which output data is desired
MAIN Predicts and corrects the flow variables
for the following step
STEP Calculates body location and flow
properties
EXEC2 Evaluates polynomial and first two deriv-
atives for given value of argument
BODYS Interpolates field data to find proper-
ties on output line
BODYS Smooths body coordinates
STEP Calculates stream function
SHOCK
FIELDS Interpolates using 3-point Lagrange
FIELDP method
SONIC
BODYS Locates sonic line
MATN Outputs data for body and along output
line
MATIN Differentiates numerically to obtain
STEP derivatives in t direction
BODYS Stores starting data for the method of
characteristics on tape
MATN Evaluates coefficients for second degree
~|FILELDP polynomial passing through three given
points
BODYS Evaluates coefficients for least-squares
fit straight line
BODYS1 Smooths data by filtering out high fre-
ERIVT quency oscillations
gggig% Calculates derivative using 5 points
ouT

Calculates fourth differences

19




TABLE II.- LIST OF SUBROUTINES

BLUNT-BODY PROGRAM - Concluded

Subroutine function

Obtains running integral of equally-

Calculates thermodynamic properties

Searches for coefficients for real-gas

Subroutine name Primary
and ID no. calling
(if any) routine
23 | ENQSSR(THOT3T) BODYS1
spaced data
EXEC1
SHOCK
DERTVS
24 | RGAS BODYS
FIELDP
ouTT
25 | SERCH RGAS
properties
26 | LOCATE FIEILDX | Locates tape at specified file
RGAS position
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TABLE IIT.- LIST OF SUBROUTINES

METHOD OF CHARACTERISTICS PROGRAM

Subroutine name Primary
and ID no. calling Subroutine function
(if any) routine
1 EXEC MATIN Reads input cards, reads input tapes,
initializes variables
2 EXEC2 (TH2485) MAIN Reads additional input data
3 TOP MAIN Locates new bow shock point and calcu-
lates the new shock angle
4 MID MATN Locates new mesh points and iterates
for solution of equation (10)
BOT(TH2423) MAIN Locates new body point and iterates
for body data
6 ESHOCK MATIN Keeps track of embedded shocks and
ad justs storage locations in P array;
interpolates for conditions on the
body upstream of a corner
T GSHOCK ESHOCK | Locates general embedded shock point
and calculates new shock angle
8 CSHOCK ESHOCK | Calculates shock angle at a corner, and
at the first mesh point away from the
corner
9 EXPAN ESHOCK Calculates additional points for an
expansion corner, and adjusts storage
locations in P array
TOP Calculates the shock Jjump conditions
10 SHOCK GSHOCK | given the shock angle and upstream
CSHOCK conditions
11 PM2 EXPAN Calculates Prandtl-Meyer flow given the
expansion angle and upstream conditions
12 RGAS Calculates gas properties; reads RGAS
tape
13 ROOTB(TH2426) BOT Locates intersection of right-running
characteristic with the body
14 CON(TH2411) MID Calculates averages of the coefficients
of equation (10)
15 DATA (TH2L25) EXEC Reads starting flow-field data if
specified on cards
16 TPRES (TH2429) Calculates total pressure
TPRES Calculates one-dimensional isentropic
L7 ISENC PM2 flow between given velocities
18 ESPACL (TH2L409) EXEC Prepares data for equal spacing
19 ESPACE(TH2412) ESPAC1 | Equally spaces data with respect to a
given variable
20 NTERP Interpolating routine
21 TERP3 (TH2405) Interpolating routine
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TABLE IIT.- LIST OF SUBROUTINES

METHOD OF CHARACTERISTICS PROGRAM - Concluded

Subroutine name | Primary
and ID no. calling Subroutine function
(if any) routine

22 | TERPY(TH2L06)

23 | POLY3(TH2408) Interpolating routines

24 | HERM

25 | ENQ55R(THOT737) Integration routine

26 | SHOCKP(TH248T) MATN Interpolates for data at prescribed
points along the bow shock

27 | BODYP(TH2488) MAIN Interpolates for data at prescribed
points along the body

28 | SEARCH(TH2489) MAIN Interpolates for data along a charac-
teristic line

29 | SERCHL(TH2416) BODYP Calculates equations of body normal
probe lines

30 | PRINTF(TH2486) MAIN Stores data along body or axis normals;
stores last probe on tape

31 SERCH RGAS Scans RGAS table for pertinent data

32 | PLOTS MATN Dummy subroutine - can be used to
write a plot tape using data in P
array

33 LOCATE EXEC Locates specified file positions on

PRINTEF | data storage tape
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Figure 1l.- Flow chart for blunt-body program.
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